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The Pfizer and Moderna COVID-19 vaccines are 
composed of lipid nanoparticles (LNP) containing a 
modified messenger RNA (mRNA) that encodes for the 
Spike S1 protein [1-3]. The LNP transfection likely involves 
particle engulfment by the host immune cells due to their 
resemblance to apoptotic bodies, vesicles with externalized 
phosphatidylserine (ePS). As the LNPs are decorated with 
PS-like ionizable phospholipids, including 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC), they encourage human 
phagocytes into internalizing them [4-6]. 

The LNP technology, to put it simply, mimics viral 
envelopes with ePS, a universal “eat me” signal, that directs 
immune cells to engulf the particle [7-8]. However, as ePS 
is also a potential “fuse me” signal, LNP may inadvertently 
facilitate the formation of pathological syncytia [9-10]. 
Moreover, ePS may activate a disintegrin and metalloprotease 
10 and 17 (ADAM 10)(ADAM 17), master regulators of 
syncytia formation, contributing further to the unintended 
consequence of cell-cell fusion [11-12]. 

LNP-incorporated mRNA comprises an enormous 
technological success that goes beyond vaccines, opening 
new avenues for developing “smart” therapeutics that can 
be delivered with pinpoint precision to specific subcellular 
structures [13]. The development of such therapeutics is 
anticipated to redefine clinical pathways, including for non-
communicable diseases. However, are these therapies ready 
for worldwide application in their present molecular form? 

The question has been asked before, often in relation to 
the potential toxicity of lipid formulations used in the past, 
especially as part of the delivering cancer therapeutics [14-
15]. However, in the following sections, we take a closer 
look at a novel perspective, namely the mRNA vaccines’ 
structure and composition and at their unintended biological 
consequences derived from pathological cell-cell fusion. 

1. Messenger RNA vaccines, an overview
To elicit the formation of neutralizing antibodies, 

exogenously administered mRNA must avoid two key 
obstacles: hydrolysis by extracellular RNAases and 
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recognition by cytosolic innate immune sensors, including 
toll-like receptors (TLRs) and retinoic acid-inducible gene 
I (RIG-I) protein [16-17]. The former is accomplished by 
hiding the nucleic acid backbone into LNPs, while the latter 
by attaching nucleobases, such as N1-methylpseudouridine 
(m1Ψ) to the mRNA [18-19] (Figure 1). The coding region 
of the mRNA is flanked by two untranslated regions (UTRs) 
followed by a polyadenylated (polyA) tail at 3’ and a cap at 
5’ for further structural stabilization and protection (Figure 
1) [17,19,20].

As mRNA vaccines are based on pre-fusion epitopes, 
the fusion pathology may be undeterred, allowing viral 
infection by syncytia formation to continue unabated [3,16]. 
This is significant, as it could account for the reoccurrence 
of COVID-19 symptoms in fully vaccinated individuals 
[3,21,22]. In addition, this may explain the rare post-
vaccination events associated with cell-cell fusion, including 
giant cell myocarditis, giant cell arteritis, and Creutzfeldt-
Jakob Disease, recorded in Vaccine Adverse Event Reporting 
System (VAERS) database (please see section “Vaccine core: 
the synthetic mRNA”) [23-27). 

2. What is cell-cell fusion?
Cell-cell fusion is a physiological or pathological process 

in which one or more adjacent cells merge their plasma 
membranes, cytoplasm, nuclei, and intracellular organelles, 
generating multinucleated syncytia often with novel, 
emerging properties [28]. Under normal circumstances, cell-
cell fusion occurs during fertilization and placentation as well 
as during the formation of myoblasts and osteoclasts [29]. 
Likewise, in the central nervous system (CNS), astrocytes 
engender physiological syncytia via connexin-mediated 
cytosolic exchange [30,31]. 

Several viruses, including SARS-CoV-2, exploit host 
physiological fusogens as these molecules induce premature 
cellular senescence and immunosuppression, phenotypes 
hospitable to viral replication and, immune evasion [32-
33]. Indeed, cell-cell fusion is triggered by ePS, a marker of 
low immunogenicity, exploited by the SARS-CoV-2 virus to 
enter into host cells undetected [9,34-36]. Virus-upregulated 
intracellular calcium (Ca2+) activates transmembrane 
protein 16F (TMEM16F), that in turn flips PS from the inner 
to the outer layer of cell membranes, promoting fusion [6]. 

Figure 1: N1-methylpseudouridine (m1Ψ)-modified mRNA (in the rectangle) is surrounded by a lipid nanoparticle (LNP) 
comprised of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and an ionizable lipid. ​Polyethylene glycol 
(PEG) is conjugated with the lipid molecules to increase the mRNA duration of action. The mRNA encodes for the full-length 
S antigen and is flanked by two untranslated regions (UTRs) and a polyadenylated (polyA) tail at the 3’ end for stabilization. 
A cap at the 5’ end offers further protection from exonuclease recognition.
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Viruses, including SARS-CoV-2, can enter host cells 
via endocytosis or cell-cell fusion, processes driven by cell-
penetrating peptides (CPPs), suggesting that endocytosis 
inhibition may not always prevent infection [37-39]. 
Endocytosis requires viral protein attachment to a cell 
surface receptor and internalization of the entire virus/
receptor complex. For example, SARS-CoV-2 binds to host 
angiotensin-converting enzyme-2 (ACE-2) via its S1 protein 
followed by endocytosis. On the other hand, ePS activates 
ADAM17, inducing cell-cell fusion via furin cleaving site 
(FCS) located within the S2 protein, a pathway independent 
of S1/ACE-2 attachment [40-43]. 

3. Vaccine core: the synthetic mRNA 
In contrast to traditional vaccines that present a plethora 

of viral proteins to the host immune cells, COVID-19 
mRNA-based therapeutics are limited to the antigen of 
interest (AOI) and elicit antibodies primarily against S1 
receptor binding site (RBS) [1,12,44]. For the complete 
success of the above method, it must be assumed that the 
SARS-CoV-2 virus cannot ingress host cells by an alternative 
pathway. However, several studies have highlighted other 
potential routes of viral ingress, including metalloprotease, 
integrins, glucose-regulating protein 78 (GRP78), antibody-
dependent enhancement, cell-penetrating peptides, and 
possibly HERV activation [45-47]. These entry points will 
be discussed in more detail after a brief examination of LNP 
components.

4. LNPs
Although transfection data is mostly proprietary, 

interrogation of LNP components can provide clues about 
the mRNA ingress into human cells [6]. For example, LNPs 
contain ionizable lipids, phospholipid 1,2-distearoyl-sn-
glycero-3-phosphocholine (DSPC), and cholesterol that can 
attract host phagocytes to internalize the particle [48-50]. 
Both ionizable lipids and DSPC resemble PS, communicating 
to phagocytes readiness for engulfment [51]. Aside from 
comprising an established “eat me” signal, ePS can also 
convey “fuse me” cues to host phagocytes that can contribute 
to the unintended consequence of pathological syncytia 
formation [10]. The LNP component, cholesterol, is also a 
promoter of pathological cell-cell fusion as it can alter the 
asymmetry of cell membranes [50]. Moreover, as cell-cell 
fusion leads to premature cellular senescence and iatrogenic 
immunosuppression, it may partly explain the immune 
dysfunction documented in some vaccinated individuals 
[52-54]. 

5. Polyethylene glycol (PEG)
PEG was added to the LNP to stabilize and prolong the 

mRNA duration of action (Figure 1). The extensive utilization 
of PEG over the past few decades, suggests that preexisting 
antibodies could trigger hypersensitivity to vaccines 
containing this molecule [55-56]. Aside from allergy, PEG 
is also an established chemical fusogen that can generate 
pathology by promoting polynucleation, aneuploidy, and 
genomic instability [57-60]. In addition, PEG upregulates 
intracellular Ca2+, activating the transmembrane protein 
16F (TMEM16F), a lipid scramblase that flips PS on the cell 
surface, triggering fusion, premature cellular senescence, and 
immunosuppression [61-30]. As these phenotypes are virus-
friendly, PEG-induced cell-cell fusion may inadvertently 
facilitate not only SARS-CoV-2 but also other viral infections 
[61,65-67]. Furthermore, ePS-activated ADAM 10 and 17 
promote syncytia formation via metalloprotease pathway 
[40, 42,43].

PEG was never used in an approved vaccine therefore, its 
presence in Pfizer-BioNTech and Moderna -1273 therapeutics 
raised concerns, especially regarding anaphylactic and 
fusogenic adverse effects [53,68,69]. Moreover, PEG 
promotes temporary permeabilization of the blood-brain 
barrier (BBB), a property exploited by the pharmaceutical 
industry for CNS delivery systems [70-72]. This may account, 
at least in part, for the rare VAERS-reported neuropsychiatric 
symptoms, including neurodegenerative disorders [73-
75]. Furthermore, earlier studies have demonstrated that 
PEG may interfere with the conformational stability of 
proteins, indicating that syncytia, cellular senescence and, 
dysfunctional proteostasis are highly intertwined [6-78]. 
While the attention to PEG and the need to further study its 
relation to the potential vaccine adverse reactions is logical 
and appropriate, it must be noted that excipients other than 
PEG might be also be involved in such reported adverse 
reaction events [79].

6. DSPC and ionizable lipids
To deliver the liposome cargo to human immune 

cells, mRNA therapeutics must trick host phagocytes 
into internalizing LNPs by phagocytosis [80,81]. This is 
accomplished by decorating the liposomal particles with 
ionizable lipids and DSPC, an anionic phospholipid that 
mimics ePS and conveys readiness for phagocytosis [82,83]. 
This “eat me” signal is exploited by many viruses, including 
SARS-CoV-2, to enter host immune cells by engulfment [51]. 

Pfizer and Moderna vaccines were designed to “imitate” 
dying cells or apoptotic bodies by utilizing ionizable lipids 
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and DSPC delivering mRNA directly to the immune cells’ 
translation machinery [5]. However, DSPC’s resemblance to 
PS may inadvertently activate ADAM 10 and 17, promoting 
pathological cell-cell fusion and subsequent pathology [40]. 

Taken together, LNPs mimicking ePS are engulfed by 
host immune cells, and generate anti-S1 antibodies by 
delivering the mRNA cargo to host ribosomes. However, 
in some cases the disruption of plasma cell asymmetry may 
inadvertently engender iatrogenic syncytia by activating the 
metalloprotease pathway.

7. Potential non-RBS modalities of SARS-CoV-2 
infection

In the sections below, we take a closer look at SARS-
CoV-2 infection by RBS/ACE-2 independent pathways that 
may escape neutralization by mRNA vaccines.

8. Infection by fusion, the metalloprotease pathway
SARS-CoV-2 infection can be disseminated from cell 

to cell by pathological syncytia, a FCS-dependent route 
also known as the metalloprotease pathway [84,85]. This 
infection modality may promote higher infectivity than 
the RBS/ACE-2 route as FCS deletion was demonstrated to 
attenuate infectivity [86]. Moreover, FCS activates ADAM10 
and 17, master regulators of cell-cell fusion, enhancing 
both syncytia formation and contagiousness [11,12]. 
Thus, the metalloprotease pathway may be resistant to 
mRNA vaccines that were designed primarily to neutralize 
pre-fusion epitopes, likely explaining the emergence of 
COVID-19 symptoms in fully vaccinated individuals 
[2,3,40,42,43,87]. Furthermore, as pathological cell-cell 
fusion was associated with premature cellular senescence 
and immunosuppression, the metalloprotease pathway may 
account for the dysfunctional immune responses observed 
in some vaccinated individuals [35,36,52]. Syncytia-related 
pathology may also contribute to other VAERs-documented 
post-vaccination events, including giant cell myocarditis, 
arteritis, and neurodegeneration [23,24,27,88]. 

9. Antibody-dependent enhancement
Antibody-dependent enhancement (ADE) is a 

mechanism of increased viral infection in the presence 
of partially neutralizing antibodies that can activate 
immunoglobulin G (IgG) Fc-gamma receptors (FcγRs) [89-
92]. This “Trojan horse” infection modality occurs when the 
SARS-CoV-2 virus hijacks antibodies to infect immune cells 
and decrease host antiviral defenses [93,94]. This infection 
route is routinely employed by many viruses, including the 

human cytomegalovirus (HCMV) known for usurping host 
T lymphocytes and macrophages [95-98].

The ADE infection pathway presents with the following 
characteristics: 1. direct correlation with the disease severity, 
2. independent of S1/ACE-2 attachment, and 3. probably 
unaffected by the mRNA vaccines [95,99]. 

10. Cell-penetrating peptides
COVID-19 proteomic studies show that SARS-CoV-2 

expresses many cell-penetrating peptides (CPP) that can 
promote viral entry and may be undeterred by the mRNA 
vaccines [100]. Indeed, many enveloped and unenveloped 
viruses contain CPPs and employ them for ingress host cells 
[101].

Aside from SARS-CoV-2, several other viruses, including 
the H5N1 avian influenza, dengue virus, and human 
papillomavirus can enter host cells via CPPs, indicating a 
common viral entry route [102,103]. In addition, CPPs are 
being utilized as pharmacological vehicles for intracellular 
delivery of therapeutics, highlighting the capability of 
these molecules to cross cell membranes [104]. CPPs can 
upregulate intracellular Ca2+, promoting both pathological 
syncytia and protein misfolding [105-108].

11. Viroporins 
Viroporins are hydrophobic, voltage-independent viral 

proteins known for piercing plasma membranes, triggering 
cell death. Many viruses, including SARS-CoV-2, express 
viroporins and promote infectivity, as these proteins are 
known for mediating viral entry and exit [109,110]. A recent in 
silico study found that the SARS-CoV-2 virus expresses three 
viroporins, the E antigen, open reading frame 3a (ORF3a), 
and ORF8a, highlighting potential, non-RBS, routes of viral 
ingress that may be refractory to mRNA vaccines [111]. 
Interestingly, vaccine-mediated neutralization of S1 protein 
may contribute to the accumulation of other viral proteins, 
including viroporins, in the extracellular space (ECS), 
probably opening alternative entry portals for viral ingress 
[110,112]. In addition, viroporin channels disrupt the ionic 
homeostasis of host cells, upregulating intracellular Ca2+ 
that in turn, promotes pathological cell-cell fusion [113].

12. HERVs
FCS was reported to activate HERVs, primarily type 

W and K, triggering not only cell-cell fusion but also 
hyperinflammatory responses and dysfunctional proteostasis 
[114-117]. HERVs are viral fossils embedded in human DNA 
that can be “awakened” by the infection with exogenous 
viruses, cancer, or neuropsychiatric conditions [118-120]. 
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Several studies demonstrated that SARS-CoV-2 can 
activate HERV-W, an ancestral gene that encodes for the 
physiological placental fusogen syncytin-1 responsible 
for the merger of trophoblasts during the early pregnancy 
[114,115]. This suggests that the reproductive post-vaccine 
events may be triggered by the FCS pathology. Virus-
upregulated syncytin-1 may promote aberrant cell-cell 
fusion throughout the host tissues and organs, including the 
brain [121,122]. Interestingly, Omicron variant convalescent 
sera contain anti-FCS antibodies, suggesting that it may 
neutralize not only the pathological cell-cell fusion but also 
HERV activation [123,121].

13. Conclusions
The mRNA vaccines were approved on an emergency 

basis to combat COVID-19 pandemic. These vaccines also 
represent the first administration of LNPs at large scale. Taken 
together, they constitute milestones in the development of a 
novel and much promising therapeutics delivery field. Having 
said that, at the time of the emergency approval, the S2 viral 
antigen was insufficiently studied, and the FCS-mediated 
fusion pathology was mostly unknown. These aspects are now 
starting to attract attention, in an effort to best understand 
the underlying cellular mechanisms, pathways and potential 
unintended consequences.

The Pfizer and Moderna vaccines elicit powerful 
neutralizing antibodies against the RBS located on S1 
protein and block viral entry by endocytosis. However, 
the S2-dependent metalloprotease pathway and other 
potential entry portals may not be adequately addressed by 
these therapeutics. Residual COVID-19 symptoms, often 
conceptualized as vaccine adverse effects, could be caused by 
FCS-mediated pathology. ADAM inhibitors and/or Omicron 
convalescent sera may effectively eradicate the SARS-CoV-2 
virus by inhibiting metalloprotease pathway.
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